当前位置:首页 > 行业报告 > 正文

【麦肯锡】分析时代:数据驱动世界中的竞争力之深度学习篇2016-12-21 15:53:04 | 编辑:hely | 查看: | 评论:0

为了对这场变革有一个深入的理解,我们通过两种方式调查机器学习带来的潜在影响。首先,我们调查了12个不同的行业,了解机器学习能解决这些行业里的那些问题。第二,我们调查了目前由人类来掌控的工作活动中,哪些可以利用机器学习实现自动化,以及各行业之间的自动化情况。

麦肯锡近日发布了一份长达136页的报告——《分析时代:数据驱动世界中的竞争力》。报告正文分为5个部分:1. 数据和分析的革命的动力;2.仍然还没抓住的机遇;在数据系统中描绘价值;4.由数据和分析推动的巅峰模型;5. 深度学习,下一波浪潮。我们挑选了报告中的深度学习部分,编译后呈现如下:

下一波浪潮:深度学习

为了对这场变革有一个深入的理解,我们通过两种方式调查机器学习带来的潜在影响。首先,我们调查了12个不同的行业,了解机器学习能解决这些行业里的那些问题。第二,我们调查了目前由人类来掌控的工作活动中,哪些可以利用机器学习实现自动化,以及各行业之间的自动化情况。

机器学习最适合解决什么问题?

机器学习包括许多在大量复杂的数据中识别模式和关联性的算法或技术。例如回归、支持向量机、k均值聚类等技术已经被使用了好几十年。其他一些技术是从前出现,但现在才开始变得可行的,这是由于现在能得到前所未有的巨大数据量以及强大的计算能力。后者被称为人工“神经网络”,启发自人脑神经元的连接。

强化学习是另一种机器学习技术,用于识别为了达到特定的目标,现在应该采取的最佳行动。这类型的问题在游戏中很常见,而且也可用于解决动态优化和控制理论问题。使用深度神经网络(“深度强化学习”)的强化学习算法在围棋、象棋等策略游戏中取得了突破。

为了学习,所有的机器学习算法都需要大量的训练数据(“经验”)。这些算法识别训练数据中的模式(pattern)以开发用数据描述的有关世界的“模型”(model)。强化学习与其他技术的不同之处在于,训练数据不是喂给算法,而是通过交互以及来自环境的反馈实时生成。但不管哪种情况,随着新的训练数据进入,算法能够改进,模型能得到调整。这个过程尤其适合解决以下三类问题:分类,预测/预估,以及生成问题。

 

\

 

图:机器学习能够解决分类、预测以及生成的问题

首先,分类问题涉及对世界的观察,例如识别图像和视频中的物体,识别语音或文本,等等。分类问题也跟在数据中寻找关联性,或根据关联性将数据分割成不同的聚类,例如客户细分问题。其次,机器学习也可用于预测事件,或预测出现某种结果的可能性。最后,机器学习可以用于生成内容,例如插入丢失的数据,生成视频序列中的下一帧,等等。

 

\

 

图机器学习的最佳商业机遇在哪?

结合传统的优化和统计学方法,机器学习能在多种条件下应用。

在访问了近50名行业专家后,我们发现了12个行业的300多个特定使用案例。关于机遇的大小, 我们将该列表删减到了每个行业的十大应用案例。然后,我们对来自不同行业的600多位专家进行了更广泛的调查,以确定他们在哪些领域看到了创造价值的最大潜力。这项调查的结果表明,机器学习中商业上的应用机会十分广泛。当我们要求专家对其行业中的个别用例进行排名时,有120个使用案例中的被至少一个行业专家命名为其行业中最有价值的三个之一。

然而,机会大小只是一部分。如上所述,机器学习算法需要大量的数据以进行训练、产生效果。例如,改善招聘匹配度对于创造更有效的劳动力市场将具有巨大的价值 - 机器学习技术非常适合进行更准确的匹配。但是,关于候选人的数据的数量和丰富性非常有限。典型的个人在劳动力市场上的互动比他们在社交媒体上或在网上购物的过程中的互动少得多。劳动力市场中机器学习的潜力可能受到这个因素的限制。

 

\

 

上图展示了12个行业中的前120名的使用案例。y 轴展现了可用数据的数量,x轴代表潜在的影响。圆圈的大小代表了可用数据资源的多样性。

深度学习具有大幅扩展自动化范围的潜力

我们调查了机器学习在各种工作任务中的表现水平,以及成功地自动化完成工作任务所需的18种能力。

 

\

 

图:在18种能力中,有7种是深度学习表现得非常好的。(橙色字)

社交:社交和情绪感知
认知:理解自然语言;生成自然语言;识别已知模式/类别(监督学习);生成新的模式/类别;优化与规划。
物理:感官知觉

上一篇:英国政府发布人工智能报告,用 AI 创新优势提升英国国力 美国政府《人工智能、自动化与经济》报告:应对人工智能驱动下的自动化经济 下一篇:

公众平台

搜索"raincent"或扫描下面的二维码